LIBERTY PAPER SET

STD. 10 : Mathematics (Basic) [N-018(E)]

Full Solution

Time: 3 Hours

ASSIGNTMENT PAPER 7

Section-A

1. (B) 2 **2.** (A) c = a **3.** (C) $\frac{-14}{3}$ **4.** (B) -12 **5.** (B) 0° **6.** (D) 2 **7.** 360 **8.** 2 **9.** $\frac{4}{11}$ **10.** Increases **11.** the tangent of the circle 12. 3 13. True 14. False 15. True 16. False 17. k = 10 18. 16 cm 19. 480 tickets 20. 6.25 21. $\frac{\pi R^2 P}{2C0^\circ}$ **22.** 60 cm **23.** (b) 4πr² **24.** (c) 2πrh Section-B **25.** $x^2 + 5x - 24 = 0$ $\therefore x^2 + 8x - 3x - 24 = 0$ $\therefore x (x + 8) - 3 (x + 8) = 0$ $\therefore (x + 8) (x - 3) = 0$ $\therefore x + 8 = 0$ and x - 3 = 0 $\therefore x = -8$ and x = 3Sum of the zeros = $-8 + 3 = -5 = -\frac{5}{1} = -\frac{b}{a} = -\frac{\text{co efficient of } x}{\text{co efficient of } x^2}$ Product of the zeros = (-8) (3) = $-24 = \frac{-24}{1} = \frac{c}{a} = \frac{-24}{1}$ costant term co efficient of x^2 **26.** Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β . $\therefore \alpha + \beta = 1 = \frac{1}{1} = \frac{-b}{a}$ and $\alpha \beta = -6 = \frac{-6}{1} = \frac{c}{a}$ \therefore a = 1, b = -1, c = -6

So, one quadratic polynomial which fits the given condition is $x^2 - x - 6$. You can check that any other quadratic polynomial that fits these conditions will be of the form $k (x^2 - x - 6)$, where k is real.

27. Here x = -3,

Now, $x^2 + 3(k + 2) x - 9 = 0$ $\therefore (-3)^2 + 3(k + 2) (-3) - 9 = 0$ $\therefore 9 - 9k - 18 - 9 = 0$ $\therefore 9k = -18$ $\therefore k = -2$ 28. Here, a = 5, d = 11 - 5 = 6

 $\therefore a_{101} = a + 100 d$ $\therefore a_{101} = 5 + 100 (6)$ $\therefore a_{101} = 5 + 600$

 $\therefore a_{101} = 605$

29. Here, a = -5, d = 2, n = 6 $S_n = \frac{n}{2} [2a + (n - 1) d]$ $\therefore S_6 = \frac{6}{2} [2 (-5) + (6 - 1)]^2$ = 3 (-10 + 10)= 3 (0) = 0

30. Suppose, the point P (x, y) is equidistant from A (3, 6) and B (-3, 4).

 $\therefore PA = PB$ $\therefore PA^{2} = PB^{2}$ $\therefore (x - 3)^{2} + (y - 6)^{2} = (x + 3)^{2} + (y - 4)^{2}$ $\therefore x^{2} - 6x + 9 + y^{2} - 12y + 36 = x^{2} + 6x + 9 + y^{2} - 8y + 16$ $\therefore -6x - 12y + 36 = 6x - 8y + 16$ $\therefore -6x - 12y + 36 - 6x + 8y - 16 = 0$ $\therefore -12x - 4y + 20 = 0$ $\therefore 3x + y - 5 = 0$

Hence, the relation between x & y is 3x + y - 5 = 0.

31. Co-ordinates from the midpoint of the diagonal AC = Co-ordinates from the midpoint of the diagonal BD

$$\therefore \quad \left(\frac{1+3}{2}, \frac{2-4}{2}\right) = \left(\frac{2+x}{2}, \frac{1+y}{2}\right)$$
$$\therefore \quad (2, -1) = \left(\frac{2+x}{2}, \frac{1+y}{2}\right)$$
$$\therefore \quad 2 = \frac{2+x}{2} \quad , \quad -1 = \frac{1+y}{2}$$
$$\therefore \quad 2+x=4 \quad , \quad 1+y=-2$$
$$\therefore \quad x=2 \quad , \quad y=-3$$

Therefore the co-ordinates of D (x, y) = D (2, -3)

в

In $\triangle ABC$, = $\angle B$ 90° and = $\angle C = \theta$

$$cosec \ \theta = \frac{13}{5}$$

$$\therefore \ \frac{AC}{AB} = \frac{13}{5}$$

$$\therefore \ \frac{AC}{13} = \frac{AB}{5} = k, \ k \text{ is positive}$$

 \therefore AC = 13 k, AB = 5k

According to Pythagoras theorem :

BC² = AC² - AB²

$$\therefore$$
 BC² = (13 k)² - (5 k)²
 \therefore BC² = 169 k² - 25 k²
 \therefore BC² = 144 k²
 \therefore BC = 12 k
 \therefore tan $\theta = \frac{AB}{BC} = \frac{5 k}{12 k} = \frac{5}{12}$ and
 $\cos \theta = \frac{BC}{AC} = \frac{12 k}{13 k} = \frac{12}{13}$
33. $\frac{2 \tan 60^{\circ}}{1 + \tan^{2} 60^{\circ}} = \frac{2\sqrt{3}}{1 + (\sqrt{3})^{2}} = \frac{2\sqrt{3}}{1 + 3} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$
34. P Kite
60 m

Here, P represents the position of the kite and the string is tied to point R on the ground.

As well as PQ is the height of the kite from the ground.

In Δ PQR, $\angle Q$ = 90°, $\angle R$ = 60° and PQ = 60 m

 $\therefore \quad \sin R = \frac{PQ}{PR}$ $\therefore \quad \sin 60^\circ = \frac{60}{PR}$ $\sqrt{3} \quad 60$

$$\therefore \quad \frac{1}{2} = \frac{00}{PR}$$
$$\therefore \quad PR = \frac{120}{\sqrt{3}} = 40\sqrt{3} \text{ m}$$

Hence, the length of the string $40\sqrt{3}$ m

35.
$$\frac{v_1}{v_2} = \frac{\frac{4}{3}\pi r_1^3}{\frac{4}{3}\pi r_2^3} = \frac{64}{27}$$
$$\therefore \frac{r_1^3}{r_2^3} = \frac{64}{27}$$
$$\therefore \frac{r_1}{r_2} = \frac{4}{3}$$
$$\therefore \frac{r_1^2}{r_2^2} = \frac{16}{9}$$
$$\therefore \frac{A_1}{A_2} = \frac{4\pi r_1^2}{4\pi r_2^2} = \frac{r_1^2}{r_2^2} = \frac{16}{9} = 16:9$$

36. r = 2.1 cm, h = 5 m

Volume of tank = $\pi r^2 h$

$$= \frac{22}{7} \times 2.1^{2} \times 5$$

= $\frac{22 \times 2.1 \times 2.1 \times 5}{7}$
= $\frac{22 \times 21 \times 21 \times 5}{7 \times 10 \times 10}$
= $\frac{11 \times 2 \times 21 \times 7 \times 3 \times 5}{7 \times 5 \times 2 \times 10}$
= $\frac{11 \times 21 \times 3}{10}$
= 69.3 m³

:. Capacity = 69.3×1000 lit. = 69300 lit.

37.

Marks obtained (x_i)	Number of students (f_i)	$f_i x_i$
10	1	10
20	1	20
36	3	108
40	4	160
50	3	150
56	2	112
60	4	240
70	4	280
72	1	72
80	1	80
88	2	176
92	3	276
95	1	95
total	$\Sigma f_i = 30$	$\Sigma f_i x_i = 1779$

$$\therefore \ \overline{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1779}{30} = \frac{593}{10} = 59.3$$
$$\therefore \ \overline{x} = 59.3$$

38. By the method of elimination :

$$x + y = 5$$
 ...(1)
 $2x - 3y = 4$...(2)

Multiply equation (1) by 3 and equation (2) by 1 and add them

$$3x + 3y = 15$$
$$2x - 3y = 4$$
$$\therefore 5x = 19$$
$$\therefore x = \frac{19}{5}$$

Put
$$x = \frac{19}{5}$$
 in equation (1)
 $x + y = 5$
 $\therefore \frac{19}{5} + y = 5$
 $\therefore y = 5 - \frac{19}{5}$
 $\therefore y = \frac{25 - 19}{5}$
 $\therefore y = \frac{6}{5}$

The solution of the equation : $x = \frac{19}{5}$, $y = \frac{6}{5}$

39. Suppose, Meena received the number ₹ 50 notes be x and ₹ 100 notes be y.

er

According to the first condition,

$$50x + 100y = 2000$$
$$\therefore x + 2y = 40$$

According to the second condition,

$$x + y = 25$$

Subtracting equation (1) & (2)

$$x + 2y = 40$$
$$x + y = 25$$
$$\therefore y = 15$$

Put y = 15 in equation (2)

x + y = 25

$$\therefore x + 15 = 25$$

 $\therefore x = 10$

Hence, Meena has 10 notes ₹ 50 and 15 notes of ₹ 100

Hence, Meena has 10 no
40.
$$a = 5, an = 95, d = 5$$

 $an = a + (n - 1) d$
 $\therefore 95 = 5 + (n - 1) 5$
 $\therefore 95 - 5 = (n - 1) 5$
 $\therefore \frac{90}{5} = n - 1$
 $\therefore n - 1 = 18$
 $\therefore n = 19$
 $S_n = \frac{n}{2} (a + an)$
 $\therefore S_{19} = \frac{19}{2} (5 + 95)$
 $\therefore S_{19} = \frac{19}{2} \times 100$
 $\therefore S_{19} = 950$

...(1)

...(2)

41. Let the ratio on which the y-axis point P (0, y) divides the line segment joining the point A (5, -6) and B (-1, -4) be $m_1 : m_2$.

The coordinates of

$$P = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

$$\therefore (0, y) = \left(\frac{m_1 (-1) + m_2 (5)}{m_1 + m_2}, \frac{m_1 (-4) + m_2 (-6)}{m_1 + m_2}\right)$$

$$\therefore (0, y) = \left(\frac{-m_1 + 5m_2}{m_1 + m_2}, \frac{-4m_1 - 6m_2}{m_1 + m_2}\right)$$

$$\therefore 0 = \frac{-m_1 + 5m_2}{m_1 + m_2}, \quad y = \frac{-4m_1 - 6m_2}{m_1 + m_2}$$

$$\therefore -m_1 + 5m_2 = 0 \qquad \therefore y = \frac{-4(5) - 6(1)}{5 + 1}$$

$$\therefore -m_1 = -5m_2 \qquad \therefore y = \frac{-20 - 6}{6}$$

$$\therefore m_1 = 5m_2 \qquad \therefore y = -\frac{26}{6}$$

$$\therefore m_1 = 5m_2 \qquad \therefore y = -\frac{13}{3}$$

$$\therefore m_1 : m_2 = 5 : 1$$

Therefore, the required ratio is 5:1. The point of intersection is (0,

42. Let, P (x, y) be the point which divides the line segment joining the points A (4, -3) and B (8, 5) in the ratio 3:1 internally.

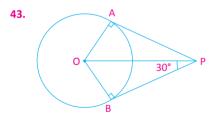
13

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \qquad y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}$$

$$\therefore x = \frac{3(8) + 1(4)}{3 + 1}, \qquad y = \frac{3(5) + 1(-3)}{3 + 1}$$

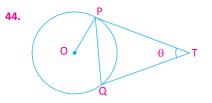
$$\therefore x = 7, \qquad y = 3$$

Therefore, (7, 3) is the required point.



OB \perp PB So, \angle OBP = 90° In \triangle OBP; \angle BOP + \angle OBP + \angle OPB = 180° $\therefore \angle$ BOP + 90° + 30° = 180° $\therefore \angle$ BOP + 120° = 180° $\therefore \angle$ BOP = 180° - 120° $\therefore \angle$ BOP = 60° OP is bisector of \angle AOB. $\therefore \angle$ AOB = 2 \angle BOP $\therefore \angle$ AOB = 2 \times 60°

∴ ∠AOB = 120°



We are given a circle with centre O, an external point T and two tangents TP and TQ to the circle, where P, Q are the points of contact.

Suppose, $\angle PTQ = \theta$

Now, TP = TQ (theorem 10.2)

So, Δ TPQ is an isosceles triangle.

$$\therefore \angle TPQ = \angle TQP \qquad = \frac{1}{2} (180^\circ - \angle PTQ)$$
$$= \frac{1}{2} (180^\circ - \theta)$$
$$= 90^\circ - \frac{1}{2} \theta$$

Now, $\angle OPT = 90^{\circ}$ (theorem 10.1)

$$\therefore \angle OPQ = \angle OPT - \angle TPQ$$

$$= 90^{\circ} - \left(90^{\circ} - \frac{1}{2}\theta\right)$$

$$= 90^{\circ} - 90^{\circ} + \frac{1}{2}\theta$$

$$= \frac{1}{2}\theta$$

$$\therefore \angle OPQ = \frac{1}{2}\angle PTQ$$

$$\therefore \angle PTQ = 2 \angle OPQ$$

45. Here, the class length is not the same so we will use the method of deviation on from a = 17 and h = 10.

Number of days (class)	Number of students (f_i)	<i>x</i> _{<i>i</i>}	u _i	$f_i u_i$
0 - 6	-11	3	- 1.4	- 15.4
6 - 10	10	8	- 0.9	- 9.0
10 - 14	7	12	- 0.5	- 3.5
14 - 20	4	17 = <i>a</i>	0	0
20 - 28	4	24	0.7	2.8
28 - 38	3	33	1.6	4.8
38 - 40	1	39	2.2	2.2
Total	40	-	-	- 18.1

Mean $\overline{x} = a + \frac{\Sigma f_i u_i}{\Sigma f_i} \times h$ $\therefore \overline{x} = 17 + \frac{-18.1 \times 10}{40}$ $\therefore \overline{x} = 17 - 4.525$ $\therefore \overline{x} = 12.475$ $\overline{x} = 12.48$ (Approx)

Hence, mean No. of days for which a student was absent is 12.48 days.

- **46.** Total number of possible outcomes on dice = 6
 - (i) Suppose event X faces with letter A on it.

$$\therefore P(X) = \frac{\text{Total number of faces with letter A}}{\text{Total number of outcomes}}$$
$$\therefore P(X) = \frac{2}{6} = \frac{1}{3}$$

(ii) Suppose event Y faces with letter D.

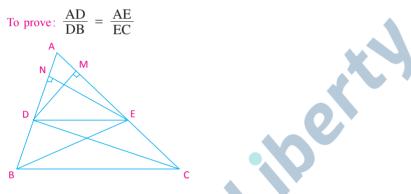
$$\therefore P(Y) = \frac{\text{Total number of faces with letter D}}{\text{Total number of outcomes}}$$
$$\therefore P(Y) = \frac{1}{6}$$

(iii) Suppose event Z faces with letter is vowel.

$$\therefore P(Z) = \frac{\text{Total number of faces with letter vowel}}{\text{Total number of outcomes}}$$
$$\therefore P(Z) = \frac{3}{6} = \frac{1}{2}$$

47. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Given: In ABC, a line parallel to side BC intersects AB and AC at D and E respectively.

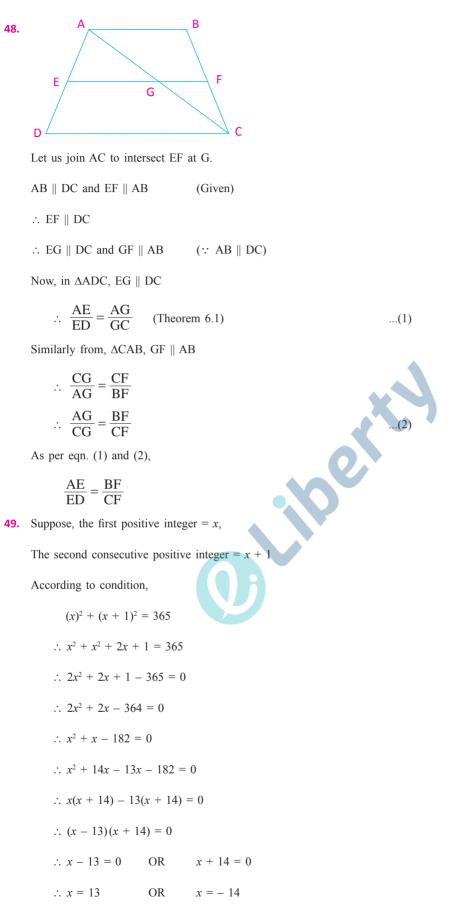


Proof: Join BE and CD and also draw DM \perp AC and EN \perp AB.

Then,
$$ADE = \frac{1}{2} \times AD \times EN$$
,
 $BDE = \frac{1}{2} \times DB \times EN$,
 $ADE = \frac{1}{2} \times AE \times DM$ and
 $DEC = \frac{1}{2} \times EC \times DM$.
 $\therefore \frac{ADE}{BDE} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB}$...(1)
and $\frac{ADE}{DEC} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC}$...(2)

Now, \triangle BDE and \triangle DEC are triangles on the same base DE and between the parallel BC and DE. then, BDE = DEC ...(3) Hence from eqⁿ. (1), (2) and (3),

$$\frac{AD}{DB} = \frac{AE}{EC}$$



But x = -14 is not positive integer, therefore, required two consecutive positive integers will be 13 and 14.

50. (i) $a_2 = a + d = 13$...(1) $a_{4} = a + 3d = 3$...(2) Subtracting equation (1) from (2), we get, (a + d) - (a + 3d) = 13 - 3 $\therefore a + d - a - 3d = 10$ $\therefore - 2d = 10$:. d = -5From (1) putting the value of d = -5, a + d = 13 $\therefore a - 5 = 13$ $\therefore a = 18$ $\therefore a_3 = a + 2d = 18 + 2(-5) = 18 - 10 = 8$ Ans. : 18, 8 (ii) $a_2 = a + d = 38$...(1) $a_6 = a + 5d = -22$...(2) Subtracting equation (1) from (2), we get, (a + d) - (a + 5d) = 38 - (-22)erth $\therefore a + d - a - 5d = 38 + 22$ $\therefore - 4d = 60$ $\therefore d = -15$ From equation (1) putting the value of d = -15a + d = 38 $\therefore a - 15 = 38$ $\therefore a = 53$ $\therefore a_3 = a + 2d = 53 + 2(-15) = 53 - 30 = 23$ $\therefore a_4 = a + 3d = 53 + 3(-15) = 53 - 45 = 8$ $\therefore a_5 = a + 4d = 53 + 4(-15) = 53 - 60 = -7$

Ans. : 53, 23, 8, -7

- 51. Here maximum class frequency is 18 which belongs to modal class 4000 5000.
 - \therefore l = lower limit of modal class = 4000
 - h = class size = 1000
 - f_1 = frequency of modal class = 18
 - f_0 = frequency of class preceding the modal class = 4

$$f_2$$
 = frequency of class succeeding modal class = 9

Mode
$$Z = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

 $\therefore Z = 4000 + \left(\frac{18 - 4}{2(18) - 4 - 9}\right) \times 1000$
 $\therefore Z = 4000 + \frac{14 \times 1000}{36 - 4 - 9}$
 $\therefore Z = 4000 + \frac{14000}{23}$
 $\therefore Z = 4000 + 608.7$
 $\therefore Z = 4608.7$

So, mode of given data is 4608.7.

÷.	2	
Э	Z	

Monthly unit (usage)	65 – 85	85 – 105	105 – 125	125 - 145	145 - 165	165 - 185	185 – 205
No. of customer	04	05	-	20	-	08	04

Monthly unit (usage)	No. of customer (<i>f</i>)	(<i>cf</i>)
65 - 85	4	4
85 - 105	5	9
105 - 125	x	9 + x
125 - 145	20	29 + x
145 - 165	У	29 + x + y
165 - 185	8	37 + x + y
185 - 205	4	41 + x + y
	n = 41 + x + y	

Here, median = 137

 $\Sigma f_i = n = 68 = 41 + x + y$

Median - class = 125 - 145

l = lower limit of median class = 125

cf = cumulative frequency of class preceding the median class = 9 + x f = frequency of median class = 20

 $\frac{n}{2} = \frac{68}{2} = 34$ h = class size = 20Median M = $l + \left(\frac{\underline{n}}{2} - cf\right) \times h$ $\therefore 137 = 125 + \left(\frac{34 - (9 + x)}{20}\right)$ $\therefore 137 - 125 = 34 - 9 - x$ $\therefore 12 = 25 - x$ $\therefore x = 25 - 12$ $\therefore x = 13$ Now, $n = \sum x_i = 41 + x + y$ $\therefore 68 = 41 + 13 + y$ $\therefore 68 = 54 + y$ $\therefore y = 68 - 54$

$$\therefore y = 14$$

Thus, the number of customers with 105 to 125 and 145 to 165 unit usage is 13 and 14 respectively.

53. Here total number of students = 100

(i) Number of students getting more than 40 marks = 2 + 1 = 3Probability = $\frac{\text{Numbers of Students getting more than 40 marks}}{7}$ Total number of students $=\frac{3}{100}$ = 0.03

(ii) Number of students getting less than 30 marks = 6 + 20 + 24 + 28 = 78

Probability = $\frac{\text{Numbers of Students getting less than 30 marks}}{\text{Total number of students}}$ $= \frac{78}{100}$ = 0.78(iii) Probability = $\frac{\text{Numbers of Students getting 25 marks}}{\text{Total number of students}}$ $= \frac{20}{100}$ = 0.2(iv) Probability = $\frac{\text{Numbers of Students getting 33 marks}}{\text{Total number of students}}$ $= \frac{15}{100}$ = 0.15

54. Total result is 8. (HHH, HTH, HHT, HTT, THH, THT, TTH, TTT)

1th

(i) Suppose event A is get at least two Heads.

(HHH, HHT, HTH, THH = 4)

:. P (A) =
$$\frac{4}{8} = \frac{1}{2}$$

(ii) Suppose event B is get exactly two Heads.

(HTH, HHT, THH = 3)

$$\therefore$$
 P (B) = $\frac{3}{8}$

(iii) Suppose event C is number of Heads are more than tails.

(HTH, HHH, HHT, THH = 4)

 $\therefore P(C) = \frac{4}{8} = \frac{1}{2}$

(iv) Suppose event D is same result all times.

(three Heads of three tails, HHH, TTT = 2)

:. P (D) =
$$\frac{2}{8} = \frac{1}{4}$$